Effect of Crystallographic Texture on Magnetic Characteristics of Cobalt Nanowires

نویسندگان

  • K Maaz
  • S Karim
  • M Usman
  • A Mumtaz
  • J Liu
  • JL Duan
  • M Maqbool
چکیده

Cobalt nanowires with controlled diameters have been synthesized using electrochemical deposition in etched ion-track polycarbonate membranes. Structural characterization of these nanowires with diameter 70, 90, 120 nm and length 30 μm was performed by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray diffraction techniques. The as-prepared wires show uniform diameter along the whole length and X-ray diffraction analysis reveals that [002] texture of these wires become more pronounced as diameter is reduced. Magnetic characterization of the nanowires shows a clear difference of squareness and coercivity between parallel and perpendicular orientations of the wires with respect to the applied field direction. In case of parallel applied field, the coercivity has been found to be decreasing with increasing diameter of the wires while in perpendicular case; the coercivity observes lower values for larger diameter. The results are explained by taking into account the magnetocrystalline and shape anisotropies with respect to the applied field and domain transformation mechanism when single domain limit is surpassed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interface coupling-induced enhancement of magnetoimpedance effect in heterogeneous nanobrush by adjusting textures of Co nanowires

Interface coupling-induced and interface coupling-enhanced magnetoimpedance (MI) effect in heterogeneous nanobrush has been investigated. The nanobrush is composed of Fe25Ni75 nanofilm and textured hexagonal close-packed cobalt nanowire array, respectively fabricated by RF magnetron sputtering and electrochemical deposition. The design of this structure is based on the vortex distribution of ma...

متن کامل

CoFe Layers Thickness and Annealing Effect on the Magnetic Behavior of the CoFe/Cu Multilayer Nanowires

CoFe/Cu multilayer nanowires were electrodeposited into anodic aluminum oxide templates prepared by a two-step mild anodization method, using the single-bath technique. Nanowires with 30 nm diameter and the definite lengths were obtained. The effect of CoFe layers thickness and annealing on the magnetic behavior of the multilayer nanowires was investigated. The layers thickness was controlled t...

متن کامل

The effect of pulsed electrodeposition parameters on the microstructure and magnetic properties of the CoNi nanowires

CoNi nanowires were deposited by pulsed electrodeposition technique into porous alumina templates. The effect of off time between pulses (toff) and reductive/oxidative time (treduc/oxid) on the microstructure and magnetic properties of the CoNi nanowires were investigated. Maximum coercivity and squareness were obtained for samples fabricated at treduc/oxid= 0.5 ms and toff =400 ms. The coerciv...

متن کامل

Magnetic Properties of Ni0.3Fe0.7 Alloy Nanowires

The effect of length variation on the magnetic properties of NiFe alloy nanowires electrodeposited into the alumina template was investigated. The diameter (45±2.5 nm) and length (~ 1.9, 7.12, 8.3, 9.5 and 13.3 µm) of the nanowires were estimated from scanning electron microscopy images. Energy dispersive spectroscopy results showed Ni3Fe7 composition of the alloy nanowire...

متن کامل

Investigations of Microstructures and Magnetic Properties through Off-time between Pulses and Controlled Cu Content in Pulse Electrodeposited NiCu Nanowires

NiCu alloy nanowires arrays were embedded into the anodic aluminum oxide (AAO) template by ac-pulse electrodeposition. Different off-time were used in electrolyte with constant concentration of Ni and Cu and acidity of 3. The effect of deposition parameters on alloy contents was investigated by studying the microstructure and magnetic properties of as-deposited NiCu alloy nanowires. Atomic forc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010